Formation of the Kiruna-type Vergenoeg iron-fluorine deposit (South Africa) by silicate liquid immiscibility: An experimental study

Olivier Namur*, Tong Hou, Francois Holtz, Bernard Charlier

*Leibnitz University Hannover - Institute of Mineralogy, Hannover, Germany, Email: o.namur@mineralogie.uni-hannover.de

Kiruna-type iron oxide deposits occur in a number of locations across the world. Controversy persists regarding their genesis and the formation of their assemblage dominated by sulfide-poor minerals (magnetite/hematite, ±apatite, ±fayalite, ±fluorite). One hypothesis involves the separation of a volatile-bearing Fe-rich immiscible melt followed by fractional crystallization, and formation of magnetite-rich cumulate rocks. The exact role of hydrothermal vs. magmatic enrichment processes is also debated. In this study we experimentally assessed whether the bulk composition of the Kiruna-type iron-fluorine Vergenoeg deposit, South Africa (17 wt.% SiO₂ and 55 wt.% FeO_t) may correspond to an immiscible Fe-rich melt paired with its host rhyolite. We mixed synthetic rhyolite powder with mafic end-members representing ore compositions and performed experiments at 1-2 kbar and 1010°C. We also varied the F and H₂O contents of our starting compositions. Silicate liquid immiscibility occurs in experiments saturated in fluorite and performed under dry conditions at oxygen fugacity ranging from QFM-1.4 to QFM+1.8, with QFM being the quartz-fayalite-magnetite solid buffer. It however does not occur in experiments performed under more oxidizing conditions (>QFM+1.8) or at high H₂O activity (> 0.2) due iron depletion in the silicate melt caused by crystallization of abundant magnetite. Where conjugate immiscible melts are observed, the Si-rich melts are andesitic to rhyolitic (61-73 wt.% SiO₂), enriched in alkalis (4-7 wt.% Na₂O + K₂O) and contain 9-13 wt.% FeO_t and 2.4-4.2 wt.% F. The Fe-rich melts are ferrobasaltic (41-50 wt.% SiO₂; 21-36 wt.% FeO_t) and are enriched in F (4.5-6.0 wt.%). All experiments, including those where immiscibility did not develop, contain solid phases dominated by magnetite, \pm fayalite, fluorite and tridymite.

Our results suggest that the Vergenoeg deposit may indeed have formed as a result of silicate liquid immiscibility between a ferrobasalt and a rhyolite. However, the low SiO₂ content of the ore compared to the Fe-rich immiscible melts indicates that the Vergenoeg pipe probably corresponds to cumulate rocks formed by crystallization of such a melt. We hypothesize that Vergenoeg represents a pipe which formed by remobilization of a mafic crystal mush and that evolved residual liquids together with the conjugate Si-rich melts were segregated during emplacement, forming the host rhyolite. Finally, we note that the F content of Vergenoeg ore (12 wt.% F) is much higher than the F solubility in the Fe-rich immiscible melt. Although this could be explained by remobilization of fluorite-rich cumulates, we cannot exclude late stage enrichment in F by hydrothermal fluids having percolated into the fluorite-bearing rhyolite around Vergenoeg.